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Negative-energy perturbations in general axisymmetric and helical Maxwell-Vlasov equilibria

Darı́o Correa-Restrepo and Dieter Pfirsch
Max-Planck-Institut fu¨r Plasmaphysik, Euratom Association, D-85748 Garching, Germany

~Received 26 December 1996!

The expression for the free energy of arbitrary perturbations of general Vlasov-Maxwell equilibria derived
by Morrison and Pfirsch is transformed and put in a concise form, which is subsequently evaluated for arbitrary
equilibria which have one ignorable coordinate, e.g., axisymmetric and helical equilibria, in the case of internal
perturbations, i.e., perturbations which vanish outside the plasma, and on its boundary. In order to generate the
electric currents necessary for equilibrium in the presence of pressure gradients, the equilibrium distribution
function of at least one particle species must be anisotropic. As a consequence, these equilibria always allow
negative-energy perturbations,without requiring a large spatial variation of the perturbation across the equi-
librium magnetic field. @S1063-651X~97!06605-1#

PACS number~s!: 52.35.Mw
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I. INTRODUCTION

The existence of negative-energy perturbations in an
erwise stable, collisionless plasma could lead to instabili
in the presence of dissipation, or it could lead to nonlin
instabilities ~and thus cause anomalous transport! through
nonlinear coupling with perturbations of positive ener
@1–4#. Therefore, it is of paramount importance to inves
gate under what conditions a given plasma equilibrium c
figuration admits negative-energy perturbations. Conside
arbitrary perturbations of general Vlasov-Maxwell equilibr
Morrison and Pfirsch@5,6# derived expressions for the se
ond variation of the free energy, and concluded t
negative-energy modes exist in any Maxwell-Vlasov equil
rium whenever the unperturbed distribution functionf n

(0) of
any particle speciesn deviates from monotonicity inv2

and/or isotropy in the vicinity of a single point, i.e., whe
ever the condition (v•k)@k•(] f n

(0)/]v)#.0 holds ~in the
frame of reference of minimum equilibrium energy! for any
particle speciesn for some position vectorx and velocityv
and for some local wave vectork. The proof of this result
was based on infinitely strongly localized perturbatio
which correspond touku→`. This raises the question of th
degree of localization actually reguired for negative-ener
modes to exist in a certain equilibrium. Studying Maxwell-
Vlasov plasma configurations, in which the equilibriu
quantities depend only onone spatial coordinate, Correa
Restrepo and Pfirsch@7–9# showed that negative-energ
modes exist for any deviation of the equilibrium distributio
function of any of the species from monotonicity and/or is
ropy,without having to impose any restricting conditions
the perpendicular wave number k' , i.e., without requiring
largek' . Detailed investigations of negative-energy pert
bations in plane and circularly symmetric plasmas have a
been done within the framework of Maxwell-drift kineti
theory by Throumoulopoulos and Pfirsch@10,11#. Within the
framework of Maxwell-Vlasov theory, the results obtain
for one-dimensional configurations were later shown to
valid also for a class of equilibria which depended not o
on one, but ontwo spatial coordinates. The equilibria con
sidered were, however, restricted in the sense that they
551063-651X/97/55~6!/7449~8!/$10.00
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only ‘‘toroidal’’ equilibrium currents, i.e., currents flowing
in the direction of the ignorable coordinate, e.g., the toroi
anglew in axisymmetry, and were thus of thebp51 type
@12#.

In the present paper, the results obtained forbp51 equi-
libria are extended to the considerably more interesting c
of general symmetric equilibria with one ignorable coord
nate, e.g., axisymmetric tokamaks and helical configuratio
which have both ‘‘toroidal’’ and ‘‘poloidal’’ currents. These
investigations make extensive use of the Poisson bracket
malism.

In order to generate the currents necessary for a gen
axisymmetric or helical equilibrium in the presence of pre
sure gradients, the equilibrium distribution function of
least one particle species must depend not only on the
ticle energyHn , but also on the canonical momentumPn3 in
the toroidal direction, which is the momentum canonica
conjugated to the ignorable coordinate~e.g., the toroidal
anglew in a tokamak!, and on at least one of the other tw
independent constants of the motion. Because of this,
configurations always allow negative-energy perturbations
is shown that large spatial variations~i.e., short wavelengths!
of the perturbations across the equilibrium magnetic field
not required, a feature which could enhance the importa
of this kind of perturbations in helical and axisymmetric co
figurations.

In Sec. II, the expression for the free energyd2H avail-
able upon arbitrary perturbations of general Maxwell-Vlas
equilibria derived by Morrison and Pfirsch@5# is transformed
and put in a concise form. Section III describes the geome
and properties of the equilibrium distribution functions of t
configurations. The expression for the free energy is th
evaluated in Sec. IV for general symmetric equilibria. Co
sidering internal perturbations, i.e., those which vanish o
side the plasma, and on its boundary, the minimizing per
bations are obtained in Sec. V, where the expression for
minimized energy is also obtained. This expression is th
discussed in Sec. VI. The results are summarized in Sec.

In Appendix A, useful relations concerning the Poiss
brackets which are needed for the calculations are deriv
Finally, in Appendix B, solutions of the Euler equation d
rived in Sec. V are found.
7449 © 1997 The American Physical Society
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II. PERTURBATION ENERGY FOR GENERAL
MAXWELL-VLASOV EQUILIBRIA

The expression for the free energyd2H available upon
arbitrary perturbations of general Maxwell-Vlasov equilibr
derived by Morrison and Pfirsch@5,6# assumes a particularl
simple form when it is evaluated for the case that the ini
perturbationdBt5t0

5“3dAt5t0
of the magnetic field van-

ishes.dAt5t0
50 can be chosen independently of the gen

ating functionsGn for the particle position and velocity per
turbation ~see Ref.@6#! because Maxwell’s equations allo
for the production of a displacement current that make
given particle-field configuration consistent. Also, for t
perturbations considered here, it is possible to show that
initial particle electric current density perturbationd j t5t0

can
be made at least arbitrarily small. According to Ref.@9#, Eq.
~9!, one then obtains

d2H5(
n
E d3xd3v

2mn
H ~dnGn!S Fn

~0!
•

]Gn

]v
2

] f n
~0!

]v
•

]Gn

]x D J
1

1

8p E d3x dE2. ~1!

Here x and v are space and velocity coordinates, resp
tively. f n

(0)(x,v) is the equilibrium distribution function for
particles of speciesn, which have massmn and electric
chargeen . Gn(x,v) is the arbitrary generating function fo
the perturbationsdx anddv of the particle position and ve
locity, respectively@5#. dE2/(8p) is the perturbation in the
electric-field energy density, and dn

5@d/dl#along unperturbed orbitsis the equilibrium Vlasov opera
tor, i.e.,

dn5v•
]

]x
1an

~0!
•

]

]v
, ~2!

where

an
~0!5

en

mn
SE~0!1

v3B~0!

c D , ~3!

with E(0)52“F (0) and B(0)5“3A(0) the time-
independent equilibrium electric and magnetic fields, resp
tively, and

Fn
~0!5

] f n
~0!

]x
1

en

mnc
B~0!3

] f n
~0!

]v
. ~4!

The LagrangianLn of a particle of speciesn is

Ln5
mn

2
v21

en

c
A~0!~x!•v2enF~0!~x!, ~5!

from which the momentum canonically conjugated tox fol-
lows:

Pn5
]Ln

]v
5mnv1

en

c
A~0!. ~6!
l

-

a

he

-

c-

Taking into account the relations derived in Appendix
Eqs. ~A9! and ~A12!, and making use of Poisson bracke
which for any two functions f 1@x,v5(p/mn)
2(en /mnc)A

(0)(x)# and f 2(x,v5•••) are defined by the
equation

@ f 1 , f 2#5
] f 1
]x U

p

•

] f 2
]p U

x

2
] f 1
]p U

x

•

] f 2
]x U

p

, ~7!

one can write

dnGn5FdGn

dt G
along unperturbed orbits

5@Gn ,Hn#, ~8!

whereHn is the unperturbed Hamiltonian, i.e.,

Hn5
1

2mn
Fpn2

en

c
A~0!~x!G21enF~0!~x!. ~9!

the expression for the perturbation energy, Eq.~1!, can then
be written as

d2H5(
n
E d3x d3p

2mn
3 @Gn ,Hn#@ f n

~0! ,Gn#

1
1

8p E d3x dE2, ~10!

Here,x,p, instead ofx,v, are now taken as the independe
variables. Equation~10! is esentially Eq.~13! of Ref. @6#
evaluated for perturbation withdA(x,t50)50.

III. EQUILIBRIUM

In generalized coordinatesqi , i51,...,3, symmetric con-
figurations are now considered which do not depend onq3 ,
but only onq1 andq2 . Examples of these are axisymmetr
equilibria, which do not depend on the toroidal anglew, and
helically symmetric equilibria, which, in cylindrical coordi
natesr ,w,z, depend only onr andu[mw1 lz, but not ex-
plicitly on z, with m and l arbitrary integer and real num
bers, respectively. The equilibrium magnetic fieldB(0)5“

3A(0) can then be expressed in the general form

B~0!5“3„Ai
~0!~q1 ,q2!“qi…

5
1

J~q1 ,q2!
H ]A3

~0!

]q2

]x

]q1
2

]A3
~0!

]q1

]x

]q2
S ]A2

~0!

]q1

2
]A1

~0!

]q2
D ]x

]q3
J , ~11!

where

J~q1 ,q2!5
]x

]q1
•

]x

]q2
3

]x

]q3
5

1

“q1•“q23“q3
. ~12!

Since the equilibrium fieldsE(0)52“F (0) and B(0)5“

3A(0) are time-independent, the particle energy
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Hn5
mn

2
v21enF~0!5

1

2mn
Fpn2

en

c
A~0!G21enF~0!

~13!

is a constant of the motion, and sinceq3 is an ignorable
coordinate, the corresponding canonical momentum

Pn3[pn35mnv31
en

c
A3

~0!~q1 ,q2! ~14!

is also a constant of the motion~calligraphic letters are use
here to denote constants of the particle motion!. In thefive-
dimensionalspace (q1 ,q2 ,pi), i51,...,3, the general equi
librium solution of Vlasov’s equation

dn f n
~0!~q1 ,q2 ,pi !5@ f n

~0! ,Hn#50 ~15!

is

f n
~0!5 f n

~0!~Hn ,Pn3 ,Kn1 ,Kn2!, ~16!

whereKn1 andKn2 are two further constants of the partic
motion which are alsoq3 independent.Kn1 andKn2 are not
explicitly known here, but it is assumed that they app
explicitly in the expression forf n

(0) in order to be able to
constructgeneralaxisymmetric or helical equilibria. Exclu
sion of eitherKn1 or Kn2 , or both, from the expression fo
f n
(0) leads tospecial symmetric equilibria. One interestin
example of these are thebp51 tokamaks, for which

f n
~0!5 f n

~0!~Hn ,Pn3!. ~17!

Introducing a local Cartesian coordinate system with un
basis vectors e1 , e2 , and e3 , such that e3
5(]x/]q3)/u]x/]q3u, the velocityv at point x can be de-
composed into three orthogonal componentsvc1 , vc2 , and
vc3 and, therefore, Hn5(mn/2)( ivci

2 1enF (0), Pn3

5@mnvc31(en /c)A
(0)
•e3#@ u]x/]q3u#. The componentsvc1

andvc2 do not contribute to the mean velocity^v&n of spe-
cies n, since f n

(0)(Hn ,Pn3) is an even function ofvc1 and
vc2 . This yields^v&n5e3(1/nn)*`

`d3v vc3f n
(0) , and the cur-

rent density is

j ~0!5(
n

ennn^v&n5e3(
n

en È`

d3v vc3f n
~0!~Hn ,Pn3!.

~18!

Therefore, for that class of equilibria there is a current o
in the direction corresponding to the ignorable coordin
~the toroidal anglew in axissymmetry! and the equilibria are
of thebp51 type @12#.

IV. PERTURBATION ENERGY FOR GENERAL
SYMMETRIC EQUILIBRIA

Here, all physical quantities are periodic in the coordin
q3 with, say, period 2p in axial symmetry or 2p/Lz in heli-
cal symmetry. Since the equilibrium does not depend
q3 , single modes corresponding to this coordinate can
considered. An appropriate ansatz for the generating func
Gn of the perturbations is then
r

y
e

e

n
e
n

Gn~x,p!5 1
2Cn~q1 ,q2 ,pi !$e

i @k3q31Gn~q1 ,q2 ,pi !#1c.c.%,
~19!

i51,...,3, whereCn andGn are arbitraryreal functions such
that Gn is a single-valued function ofq1 , q2 and of the
pi8s. With this ansatz, one obtains

@Gn ,Hn#5
]Gn

]Cn
@Cn ,Hn#1

]Gn

]Gn
@Gn ,Hn#1

]Gn

]q3
@q3 ,Hn#,

~20!

@ f n
~0! ,Gn#5

]Gn

]Cn
@ f n

~0! ,Cn#1
]Gn

]Gn
@ f n

~0! ,Gn#

1
]Gn

]q3
@ f n

~0! ,q3#, ~21!

]Gn

]Cn
5 1

2 $ei ~k3q31Gn!1c.c.%, ~22!

]Gn

]Gn
5

i

2
Cn$e

i ~k3q31Gn!2e2 i ~k3q31Gn!%,
]Gn

]q3
5k3

]Gn

]Gn
.

~23!

Inserting Eqs.~20!–~23! in Eq. ~10!, and integrating with
respect toq3 betweenq30 andq3012p/k3 , yields

d2H5(
n
E J~q1 ,q2!

2mn
3

p

k3
dq1dq2d

3p$2@Cn ,Hn#

3@Cn , f n
~0!#2Cn

2@gn ,Hn#@gn , f n
~0!#%

1
1

8p E d3x dE2, ~24!

where

gn[k3q31Gn~q1 ,q2 ,pi !, ~25!

and the Poisson bracket@gn , f n
(0)# is given explicitly by

@gn , f n
~0!#5@gn ,Hn#

] f n
~0!

]Hn
1k3

] f n
~0!

]Pn3
1@gn ,Kn1#

] f n
~0!

]Kn1

1@gn ,Kn2#
] f n

~0!

]Kn2
. ~26!

V. EXTREMIZATION OF THE PERTURBATION
ENERGY

As pointed out in Sec. II, the equilibrium Vlasov operat
dn , given explicitly by Eq.~2!, means differentiation with
respect to time along the unperturbed orbits~see also Appen-
dix A!. Then, for any two functionsf 1,2(qi ,pi), i51,...,3,
the following relations are valid:
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dn@ f 1 , f 2#5
d

dt
@ f 1 , f 2#5†@ f 1 , f 2#,Hn‡

5Fd f1dt , f 2G1F f 1 , d f2dt G . ~27!

Owing to the lack of knowledge concerning the expli
form of the two constants of the motionKn1 andKn2 , com-
plete minimalization ofd2H, Eq. ~24!, with respect toGn is
not possible. Partial minimalization, however, can be acco
plished if one imposes an appropriate constraint. This is d
here by minimizingd2H under the subsidiary condition tha
the functionald2Hconstraintremains unchanged, with
it

tio
-
e

d2Hconstraint5(
n
E J~q1 ,q2!

2mn
3

p

k3
dq1dq2d

3pH Cn
2@gn ,Hn#

3F @gn ,Kn1#
] f n

~0!

]Kn1
1@gn ,Kn2#

] f n
~0!

]Kn2
G J . ~28!

Accordingly, we minimize the auxiliary functionald2Haux,
defined by the relation

~d2H !aux5d2H1l~d2H !constraint, ~29!

where l is a Lagrange multiplier. The variation o
(d2H)aux with respect toGn is
dGn
~d2H !aux5~d2H !aux~Gn1dGn!2~d2H !aux~Gn!5(

n
E J~q1 ,q2!

2mn
3

p

k3
dq1dq2d

3p@2Cn
2#H @gn ,Hn#@dGn , f n

~0!#

1@dGn ,Hn#@gn , f n
~0!#2l@gn ,Hn#F @dGn ,Kn1#

] f n
~0!

]Kn1
1@dGn ,Kn2#

] f n
~0!

]Kn2
G

2l@dGn ,Hn#F @gn ,Kn1#
] f n

~0!

]Kn1
1@gn ,Kn2#

] f n
~0!

]Kn2
G J , ~30!

which, using the definition of the Poisson brackets, Eq.~7! and, in particular, Eq.~27!, can be transformed to

dGn
~d2H !aux5(

n
E J~q1 ,q2!

2mn
3

p

k3
dq1dq2d

3pH ]

]p
•FdGnCn

2~dngn!F ] f n
~0!

]x U
p

2lF ] f n
~0!

]Kn1

]Kn1

]x U
p

1
] f n

~0!

]Kn2

]Kn2

]x U
p
G G G

2
]

]x
•FdGnCn

2~dngn!F ] f n
~0!

]p U
x

2lF ] f n
~0!

]Kn1

]Kn1

]p U
x

1
] f n

~0!

]Kn2

]Kn2

]p U
x
G G G

2dnF FdGnCn
2F @gn , f n

~0!#2lF@gn ,Kn1#
] f n

~0!

]Kn1
1@gn ,Kn2#

] f n
~0!

]Kn2
G GG G

1dGnFdnFCn
2@gn , f n

~0!#2lCn
2F @gn ,Kn1#

] f n
~0!

]Kn1
1@gn ,Kn2#

] f n
~0!

]Kn2
G G

1@Cn
2~dngn!, f n

~0!#2lF @Cn
2~dngn!,Kn1#

] f n
~0!

]Kn1
1@Cn

2~dngn!,Kn2#
] f n

~0!

]Kn2
G G J . ~31!
Here,dGn is taken to vanish outside the plasma, and on
boundary ~i.e., internal perturbations are considered!. Be-
cause of this, the term which is a divergence inx does not
contribute. The term which is a divergence inp vanishes
upon integration becausef n

(0)→0 for p→`. For the same
reasons, the contribution of termdn(dGnCn

2@gn , f n
(0)#) also

vanishes, as can be seen by taking into account the rela
s

ns

dn~dGnCn
2@gn , f n

~0!# !5†dGnCn
2@gn , f n

~0!#,Hn‡

5~]/]x!•†dGnCn
2@gn, f n

~0!#~]H/]p!‡

2~]/]p!•†dGnCn
2@gn , f n

~0!#

3~]Hn /]x !‡.
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In a similar way, it can be shown that the term

dnFldGnCn
2F @gn ,Kn1#

] f n
~0!

]Kn1
1@gn ,Kn1#

] f n
~0!

]Kn1
G G

does not contribute~for this to be valid, the functionsdngn

5@gn ,Hn# and @gn , f n
(0)# must be single valued. This is th

case for the solutions found in Appendix B. Therefore

dGn
~d2H !aux5(

n
E J~q1 ,q2!

2mn
3

p

k3
dq1dq2d

3p~dGn!

3H dnFCn
2@gn , f n

~0!#2lCn
2F @gn ,Kn1#

] f n
~0!

]Kn1

1@gn ,Kn2#
] f n

~0!

]Kn2
G G1@Cn

2~dngn!, f n
~0!#

2lF @Cn
2~dngn!,Kn1#

] f n
~0!

]Kn1

1@Cn
2~dngn!,Kn2#

] f n
~0!

]Kn2
G J . ~32!

SincedGn is arbitrary in the internal region, the condition fo
the vanishing ofdGn

(d2H)aux is

dnFCn
2@gn , f n

~0!#2lCn
2F @gn ,Kn1#

] f n
~0!

]Kn1
1@gn ,Kn2#

] f n
~0!

]Kn2
G G

1@Cn
2~dngn!, f n

~0!#2lF @Cn
2~dngn!,Kn1#

] f n
~0!

]Kn1

1@Cn
2~dngn!,Kn2#

] f n
~0!

]Kn2
G50. ~33!

As pointed out in Appendix B, it is not necessary to find t
most general solution of this equation. It suffices to find
lutions which are general enough to show that it is poss
to maked2H negative in all cases of interest. With the e
pressions for@gn ,Hn# and @gn , f n

(0)# found in Appendix B
the perturbed energy, Eq.~24! becomes

d2H52(
n
E J~q1 ,q2!

2mn
3

p

k3
dq1dq2d

3pCn
2

] f n
~0!

]Hn

3CnaF Cna1k3

] f n
~0!

]Pn3

] f n
~0!

]Hn

1Cnb

] f n
~0!

]Kn1

] f n
~0!

]Hn

1Cnc

] f n
~0!

]Kn2

] f n
~0!

]Hn

G .
~34!

The electric-field energy term 1/8p*d3x dE2 has been
dropped for the minimum ofd2H, since the perturbed charg
density can be made zero by an appropriate choice of
signsof Cn , which do not influence Eq.~34!, and by making
use of the freedom to choosedȦt5t0

, since this quantity is
arbitrary. That the initial perturbed charge density can
made to vanish follows as in Refs.@7–9# ~in a similar way, it
-
le

e

e

can be shown that the initial current density perturbat
d j t5t0

can be made at least arbitrarily small!.

As explained in Appendix B,Cna is a completely arbitrary
function of the constants of the motionHn , Pn3 , andf n

(0) for
particles which do not have periodic orbits. For the exce
tional case of particles with periodic orbits,Cna is given by
Cna5(2p/tn)nn0 , wheretn is the period of the motion, and
nn0 is a completely arbitrary positive or negative integer.

The wave number corresponding to the symmetry dir
tion k3 is completely arbitrary, andCnb andCnc are arbitrary
functions of the constants of the motionHn , Pn3 , Kn1 , and
Kn2 .

VI. DISCUSSION

For the general symmetric equilibria considered he
it is easy to make the expression for the perturbat
energy d2H negative by exploiting the fact tha
the functions Cn(Hn ,Pn3 ,Kn1 ,Kn2) and the constants
of the motion Cna(Hn ,Pn3 , f n

(0)), Cnb(Hn ,Pn3 ,Kn1 ,Kn2),
Cnc(Hn ,Pn3 ,Kn1 ,Kn2), and alsok3 , can be arbitrarily cho-
sen.

If ] f n
(0)/]Hn.0 for someHn0 , Pn30, Kn10, andKn20,

d2H can easily be made negative. It suffices to localizeCn

to the region inHn , Pn3 , Kn1 andKn2 where ] f n
(0)/]Hn

.0. Outside this region,Cn vanishes. All otherCm are
made equal to zero. One can then, for instance, choosek3 ,
Cnb andCnc equal to zero.d2H is then negative for allCna
Þ0. Or, if k3Þ0 is chosen, an appropriate choice ofCna
makesd2H negative, and so forth.

If ] f n
(0)/]Hn,0 for someHn0 , Pn30, Kn10, andKn20, as

is always the case, one localizes around these values in
way just explained. Ifk3Þ0 and] f n

(0)/]Pn3Þ0, then, choos-
ing, for instance, Cnb5Cnc50, and Cna„Cna

1k3@(] f n
(0)/]Pn3)/(] f n

(0)/]Hn)#…,0 yields d2H,0. If,
however, k350 or ] f n

(0)/]Pn350, but ] f n
(0)/]Kn1 and

] f n
(0)/]Kn2 arenot both zero, then, choosing appropriate va

ues forCnb andCnc yields d2H,0.
If ] f n

(0)/]Hn,0 and ] f n
(0)/]Pn35] f n

(0)/]Kn1

5] f n
(0)/]Kn250 for someHn0 , Pn30, Kn10, andKn20, and

all n, then the distribution functionsf n
(0) are isotropic and

monotonically decreasingin this region of phase space, an
it is not possible to maked2H negative by localizing the
Cn’s around these values. This is in agreement with previ
results@7–9,12,13#. For the configurations considered her
however, this can be the case only in some regions of ph
space because nonvanishing gradients with respect toPn3 ,
Kn1 , andKn2 are necessary in order to produce the elec
currents needed for equilibrim in the presence of press
gradients.

VII. SUMMARY

The general expression for the perturbation energy
Maxwell-Vlasov equilibria was evaluated for symmetr
configurations which have one ignorable variable~e.g., the
toroidal anglew in a tokamak oru5mw1kz in a helically
symmetric configuration!. Explicit dependence of the equ
librium distribution functions not only on the conserved pa
ticle energyHn , but also on the conserved momentumPn3
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and on the two further constants of the motionKn1 and
Kn2 , is essential for generating the electric currents nec
sary for equilibrium in the presence of pressure gradie
Owing to this dependence, the equilibrium distribution fun
tion of at least one particle species is anisotropic inv space.

Perturbations of negative energy (d2H,0) are easily ob-
tained for any local deviation from monotonicity~i.e., if
] f n

(0)/]Hn.0 for someHn0 , Pn30, Kn10, andKn20! of the
distribution function of any of the particle speciesn. But also
if ] f n

(0)/]Hn,0, it is possible to maked2H negative because
of the necessary anisotropy of the distribution function of
least one particle species~explicit dependence onPn3 ,
Kn1 , andKn2!. No conditions are imposed on the wave nu
bers. In particular, large spacial gradients of the pertur
tions, and corresponding large perpendicular wave numb
arenot required. This enhances the relevance of these mo
which could be related to nonlinear instabilities and cor
sponding anomalous transport in tokamks and helically s
metric equilibria. In order to obtain these results, it was s
ficient to consider perturbations which are initially elect
neutral, and which satisfydBt5t0

50.

APPENDIX A: PARTIAL DERIVATIVES
AND POISSON BRACKETS

Let qi(x), i51,...,3 begeneralized coordinates with co
variant basis]x/]qi and contravariant basis]qi /]x5“qi .
The corresponding covariant and contravariant velocity co
ponents are, respectively,

v i~x,v!5v•
]x

]qi
and v i~x,v!5v•“qi5q̇i , ~A1!

and, correspondingly, for the components of the canon
momentumpn5mnv1(en /c)A

(0),

pi5p•
]x

]qi
5mnv i1

en

c
Ai

~0!~x!, ~A2!

pi5p•“qi5mnv
i1

en

c
A~0!i~x!. ~A3!

This yields the relations

]pi
]x U

v

5mn

]v i
]x U

v

1
en

c

]Ai
~0!

]x
,

]pi
]pU

x

5
]x

]qi
,

]pi

]pU
x

5“qi .

~A4!

From the expression forpn , the following results are ob
tained:

]Gn

]v U
x

5mn

]Gn

]p U
x

, ~A5!

]Gn

]x U
v

[“qi
]Gn

]qi
U
v

5
]Gn

]x U
p

1
en

c F]A~0!

]x G•]Gn

]p U
x

5
]Gn

]x U
p

1
en

mnc
F]A~0!

]x G•]Gn

]v U
x

. ~A6!
s-
s.
-

t

-
-
rs,
s,
-
-
-

-

al

These relations yield

] f n
~0!

]x U
v

]Gn

]v U
x

2
] f n

~0!

]v U
x

]Gn

]x U
v

5mnF ] f n
~0!

]x U
p

]Gn

]p U
x

2
] f n

~0!

]p U
x

]Gn

]x U
p
G

1
en

mnc
“qi•F ]Gn

]v U
x
F ]A~0!

]qi
•

] f n
~0!

]v U
x
G

2
] f n

~0!

]v U
x
F ]A~0!

]qi
•

]Gn

]v U
x
G G

5mnF ] f n
~0!

]x U
p

]Gn

]p U
x

2
] f n

~0!

]p U
x

]Gn

]x U
p
G

1
en

mnc
“qi•F ]A~0!

]qi
3F ]Gn

]v U
x

3
] f n

~0!

]v U
x
G G . ~A7!

Taking into account the generally valid relation“3A(0)

5“qi3(]A(0)/]qi ), and the definition of the Poisso
brackets

@ f n
~0! ,Gn#5

] f n
~0!

]x U
p

]Gn

]p U
x

2
] f n

~0!

]p U
x

]Gn

]x U
p

, ~A8!

one then obtains

] f n
~0!

]x U
v

]Gn

]v U
x

2
] f n

~0!

]v U
x

]Gn

]x U
v

5mn@ f n
~0! ,Gn#2

en

mnc
B~0!

•F ] f n
~0!

]v U
x

3
]Gn

]v U
x
G . ~A9!

The unperturbed Hamiltonian for particles of speciesn is

Hn5
mn

2
v21enF~0!~x!

5
1

2mn
Fpn2

en

c
A~0!~x!G21enF~0!~x!, ~A10!

and, therefore,

]Hn

]v U
x

5mnv, U]Hn

]x U
v

5en

]F~0!

]x
. ~A11!

With Eqs.~2!, ~3!, and~A11! ~with the appropriate substitu
tions made! taken into account, the time derivative ofGn

along unperturbed orbitsdnGn can be written as
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dnGn5v•
]Gn

]x U
v

1
en

mn
F2

]F~0!

]x
1
v3B~0!

c G•]Gn

]v U
x

5
1

mn
F ]Gn

]x U
v

]Hn

]v U
x

2
]Hn

]x U
v

]Gn

]v U
x
G

1
en

mnc
B~0!

•F ]Gn

]v U
x

3
]Hn

]v U
x
G5@Gn ,Hn#.

~A12!

APPENDIX B: SOLUTION OF
EULER’S EQUATION

The minimization of the perturbation energyd2H with
respect toGn(q1 ,q2 ,pi), i51,...,3, yields Euler’s equation
~33!. In terms of the functiongn5k3q31Gn(q1 ,q2 ,pi), this
equation can be written as

dnH 2Cn
2@gn , f n

~0!#1gn@Cn
2, f n

~0!#

22lCn
2F @gn ,Kn1#

] f n
~0!

]Kn1
1@gn ,Kn2#

] f n
~0!

]Kn2
G

2lgnF @Cn
2,Kn1#

] f n
~0!

]Kn1
1@Cn

2,Kn2#
] f n

~0!

]Kn2
G J

2@gndn~Cn
2!, f n

~0!#1lF @gndn~Cn
2!,Kn1#

] f n
~0!

]Kn1

1@gndn~Cn
2!,Kn2#

] f n
~0!

]Kn2
G50, ~B1!

where, again,

dngn5Fdgn

dt G
a.u.o.

5@gn ,Hn#. ~B2!

Here, the subscript a.u.o. means that the derivatives are t
along the unperturbed orbits of the particle motion inx-p
space.Cn , which is the amplitude of the generating functio
Gn , is an arbitrary, real, single-valued function. Based
previous experience@7–9,12#, we choosetest functionsCn

which depend exclusively on constants of the motion,

Cn5Cn~Hn ,Pn3 ,Kn1 ,Kn2!, ~B3!

and Eq.~B1! reduces to

dnF2Cn
2@gn , f n

~0!#22lCn
2F @gn ,Kn1#

] f n
~0!

]Kn1

1@gn ,Kn2#
] f n

~0!

]Kn2
G1gn@12l#@Kn1 ,Kn2#

3F ]Cn
2

]Kn1

] f n
~0!

]Kn2
2

]Cn
3

]Kn2

] f n
~0!

]Kn1
G G50. ~B4!

Therefore, the sum of all terms inside the brackets must b
constant of the motion. In this expression, the only te
en

n

a

which depends explicitly onq3 is gn5k3q31Gn , but not
@gn , f n

(0)# or @gn ,Kn i #, i51 and 2. Then, for generalk3 ,
Cn and@Kn1 ,Kn2#, this expression can be a constant of t
motion only if

l51, ~B5!

and Eq.~B4! reduces to

@dngn ,Hn#
] f n

~0!

]Hn
1@dngn ,Pn#

] f n
~0!

]Pn3
50. ~B6!

It is not necessary to find the general solution to this eq
tion. It suffices to find solutions which are general enough
show that it is possible to maked2H negative in all cases o
interest. With the ansatz

dngn[@gn ,Hn#5Cna„Hn ,Pn3 , f n
~0!~Hn ,Pn3 ,Kn1 ,Kn2!…,

~B7!

Eq. ~B6! is satisfied.Cna is a completely arbitrary function o
Hn , Pn3 , and f n

(0)(Hn ,Pn3 ,Kn1 , and Kn2) for particles
which do not have periodic orbits. Explicitly, Eq.~B7!
means

FdGn

dt G
a.u.o.

1k3q̇3@q1 ,q2 ,pi #

5Cna@Hn ,Pn3 , f n
~0!~Hn ,Pn3 ,Kn1 ,Kn2!#, ~B8!

an expression which allows, in principle, to determineGn ,
and thusgn , by integration along the unperturbed orbits u
der the constraint that the resulting generating function
the particle position and velocity perturbationGn(x,p) be
single valued. This is similar to the case treated in Ref.@9#,
Appendix D. For the exceptional case of particles with pe
odic orbits,Cna is obtained by integrating Eq.~B8! along the
closed orbit inx-p space, and is then given by

Cna5
2p

tn
Fmn01

tn

2p
^k3q̇3&G , ~B9!

where tn is the period of the motion, the angles are t
corresponding mean values along the unperturbed orbits,
mn0 is a completely arbitrary positive or negative intege
For these periodic orbits,@q3(t01tn)2q3(t0)#k3 /(2p) is
some integer number, which we callmnq3

. Therefore

Cna5
2p

tn
@mn01mnq3

#[
2p

tn
nn0 . ~B10!

Sincemn0 is a completely arbitrary integer, so isnn0 .
For the evaluation of the perturbation energy, Eq.~24!,

not only dngn5@gn ,Hn# is needed, but also@gn , f n
(0)#. The

functiongn itself, however, is not needed. Though this fun
tion is not a constant of the motion,@gn , f n

(0)# is such a
constant since

†@gn , f n
~0!#,Hn‡5dn@gn , f n

~0!#5@dngn , f n
~0!#50.

~B11!

Furthermore, one has
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@gn , f n
~0!#5@gn ,Hn#

] f n
~0!

]Hn
1@gn ,Pn3#

] f n
~0!

]Pn3

1@gn ,Kn1#
] f n

~0!

]Kn1
1@gn ,Kn2#

] f n
~0!

]Kn2

5Cna

] f n
~0!

]Hn
1k3

] f n
~0!

]Pn3
1@gn ,Kn1#

] f n
~0!

]Kn1

1@gn ,Kn2#
] f n

~0!

]Kn2
. ~B12!

The left-hand side and the first two terms of the right-ha
side of this equation are constants of the motion. Theref
the sum of the last two terms@gn ,Kn1#(] f n

(0)/]Kn1)
1@gn ,Kn2#(] f n

(0)/]Kn2! must also be a constant of the m
tion. Explicitly, one has

dn@gn ,Kn1#5@dngn ,Kn1#5@Cna~Hn ,Pn3 , f n
~0!!,Kn1#

5@Hn ,Kn1#
]Cna

]Hn
1@Pn3 ,Kn1#

]Cna

]Pn3

1@ f n
~0! ,Kn1#

]Cna

] f n
~0! . ~B13!

@Hn ,Kn1# vanishes becauseKn1 is a constant of the motion
@Pn3 ,Kn1# vanishes sinceKn1 does not depend onq3 , and
@ f n

(0) ,Kn1#52@Kn1 ,Kn2#(] f n
(0)/]Kn2). Therefore
d

d
e,

dn@gn ,Kn1#52@Kn1 ,Kn2#
]Cna

] f n
~0!

] f n
~0!

]Kn2
. ~B14!

Integration of this equation along unperturbed orbits betw
times t0 and t yields

@gn ,Kn1#5Cnb~Hn ,Pn3 ,Kn1 ,Kn2!

2@Kn1 ,Kn2#
]Cna

] f n
~0!

] f n
~0!

]Kn2
~ t2t0!. ~B15!

In a similar way, one obtains

@gn ,Kn2#5Cnc~Hn ,Pn3 ,Kn1 ,Kn2!

1@Kn1 ,Kn2#
]Cna

] f n
~0!

] f n
~0!

]Kn1
~ t2t0! ~B16!

and, therefore,

@gn ,Kn1#
] f n

~0!

]Kn1
1@gn ,Kn2#

] f n
~0!

]Kn2
5Cnb

] f n
~0!

]Kn1
1Cnc

] f n
~0!

]Kn2
.

~B17!

Thus, although@gn ,Kn1# and @gn ,Kn2# are constants of the
motion only if @Kn1 ,Kn2#50, or if f n

(0) does not depend on
Kn2 orKn1 , respectively, the combination of these two term
which appears ind2H is a constant of the motion even
@Kn1 ,Kn2#Þ0. The constants of the motionCnb andCnc can
be arbritrarily chosen.
nd
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