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Negative-energy perturbations in general axisymmetric and helical Maxwell-Vlasov equilibria
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The expression for the free energy of arbitrary perturbations of general Vlasov-Maxwell equilibria derived
by Morrison and Pfirsch is transformed and put in a concise form, which is subsequently evaluated for arbitrary
equilibria which have one ignorable coordinate, e.g., axisymmetric and helical equilibria, in the case of internal
perturbations, i.e., perturbations which vanish outside the plasma, and on its boundary. In order to generate the
electric currents necessary for equilibrium in the presence of pressure gradients, the equilibrium distribution
function of at least one particle species must be anisotropic. As a consequence, these equilibria always allow
negative-energy perturbationsithout requiring a large spatial variation of the perturbation across the equi-
librium magnetic field[S1063-651X97)06605-1

PACS numbdps): 52.35.Mw

[. INTRODUCTION only “toroidal” equilibrium currents, i.e., currents flowing
in the direction of the ignorable coordinate, e.g., the toroidal
The existence of negative-energy perturbations in an othangle ¢ in axisymmetry, and were thus of thg,=1 type
erwise stable, collisionless plasma could lead to instabilitie$12].
in the presence of dissipation, or it could lead to nonlinear In the present paper, the results obtaineddg+ 1 equi-
instabilities (and thus cause anomalous transpéinrough  libria are extended to the considerably more interesting case
nonlinear coupling with perturbations of positive energyOf general symmetric equilibria with one ignorable coordi-
[1-4]. Therefore, it is of paramount importance to investi- hate, e.g., axisymmetric tokamaks and helical configurations,
gate under what conditions a given plasma equilibrium conWhich have both “toroidal” and “poloidal” currents. These
figuration admits negative-energy perturbations. Considerin§ivestigations make extensive use of the Poisson bracket for-
arbitrary perturbations of general Vlasov-Maxwell equilibria, Malism.
Morrison and Pfirschi5,6] derived expressions for the sec- In order to generate the currents necessary for a general

ond variation of the free energy, and concluded thaXisymmetric or helical equilibrium in the presence of pres-

negative-energy modes exist in any Maxwell-Viasov equilib-S4¢ gradients, the equilibrium distribution function of at

. MU . least one particle species must depend not only on the par-
rium whenever the unperturbed distribution functigf of .\ energ‘;/H but glso on the cangnical momezt@gg in P
v

any particle species’ deviates from monotonicity iv? e oroidal direction, which is the momentum canonically
and/or isotropy in the vicinity of a single point, i.e., when- conjugated to the ignorable coordinate.g., the toroidal
ever the condition \(-k)[Kk-(df{?/gv)]>0 holds (in the  anglee in a tokamak and on at least one of the other two
frame of reference of minimum equilibrium enejgpr any  independent constants of the motion. Because of this, the
particle species’ for some position vectox and velocityv  configurations always allow negative-energy perturbations. It
and for some local wave vectdr. The proof of this result is shown that large spatial variatiofi®., short wavelengths
was based on infinitely strongly localized perturbations,of the perturbations across the equilibrium magnetic field are
which correspond tdk|—e. This raises the question of the not required, a feature which could enhance the importance
degree of localization actually reguired for negative-energyof this kind of perturbations in helical and axisymmetric con-
modes to exist in a certain equilibriunstudying Maxwell-  figurations.

Vlasov plasma configurations, in which the equilibrium In Sec. II, the expression for the free enerddH avail-
quantities depend only onne spatial coordinate, Correa- able upon arbitrary perturbations of general Maxwell-Vlasov
Restrepo and Pfirsch7-9] showed that negative-energy equilibria derived by Morrison and Pfirs¢f] is transformed
modes exist for any deviation of the equilibrium distribution and put in a concise form. Section Il describes the geometry
function of any of the species from monotonicity and/or isot-and properties of the equilibrium distribution functions of the
ropy, without having to impose any restricting conditions on configurations. The expression for the free energy is then
the perpendicular wave number, k i.e., without requiring evaluated in Sec. IV for general symmetric equilibria. Con-
largek, . Detailed investigations of negative-energy pertur-sidering internal perturbations, i.e., those which vanish out-
bations in plane and circularly symmetric plasmas have alsside the plasma, and on its boundary, the minimizing pertur-
been done within the framework of Maxwell-drift kinetic bations are obtained in Sec. V, where the expression for the
theory by Throumoulopoulos and Pfirsit0,11]. Within the ~ minimized energy is also obtained. This expression is then
framework of Maxwell-Vlasov theory, the results obtained discussed in Sec. VI. The results are summarized in Sec. VII.
for one-dimensional configurations were later shown to be In Appendix A, useful relations concerning the Poisson
valid also for a class of equilibria which depended not onlybrackets which are needed for the calculations are derived.
on one, but ortwo spatial coordinates. The equilibria con- Finally, in Appendix B, solutions of the Euler equation de-
sidered were, however, restricted in the sense that they haived in Sec. V are found.

1063-651X/97/58)/74498)/$10.00 55 7449 © 1997 The American Physical Society



7450 DARIO CORREA-RESTREPO AND DIETER PFIRSCH 55
Il. PERTURBATION ENERGY FOR GENERAL Taking into account the relations derived in Appendix A,
MAXWELL-VLASOV EQUILIBRIA Egs. (A9) and (A12), and making use of Poisson brackets,
which  for any two functions fqx,v=(p/m,)
—(e,/m,c)A®(x)] and fy(x,v=---) are defined by the
equation

The expression for the free energfH available upon
arbitrary perturbations of general Maxwell-Vlasov equilibria
derived by Morrison and Pfirsdtb,6] assumes a particularly
simple form when it is evaluated for the case that the initial
perturbation(SBt:t():Vx OAt—t, of the magnetic field van- [f,.f,]=

ishes.&At:tozo can be chosen independently of the gener-

ating functionsG,, for the particle position and velocity per-
turbation (see Ref[6]) because Maxwell’'s equations allow

ot
X

o,
5I0

K
r?p

o,
o"X

: )

one can write

for the production of a displacement current that makes a

: : ' . : : dG,
given particle-field configuration consistent. Also, for the d,G,= =[G, H,], 8)
perturbations considered here, it is possible to show that the dt

along unperturbed orbits
initial particle electric current density perturba‘uéin:to can

be made at least arbitrarily small. According to R&f, Eq.  WhereH, is the unperturbed Hamiltonian, i.e.,

(9), one then obtains )

e
= — 2 a0 (0)
2H— Z f d3xd3 N aGV f(0> G, H, om, P, CA x)| +e,®7(x). 9
(d,G)| Ry N NV IX _ _
the expression for the perturbation energy, Hg, can then
1 be written as
= f d3x SE2. (1)

3

=3 [ P16, m0 6,

V

Here x and v are space and velocity coordinates, respec-
tively. f(yo)(x,v) is the equilibrium distribution function for
particles of specie_S/, which .have massm, and elgctric +i f d3x SE2, (10)
chargee,. G,(x,v) is the arbitrary generating function for

the perturbation$x and év of the particle position and ve-

locity, respectively[5]. 5E?/(87) is the perturbation in the Here,x,p, instead ofx,v, are now taken as the independent
electric-field energy density, and d, variables. Equatior{10) is esentially Eq.(13) of Ref. [6]
=[d/dTaiong unperturbed orbitiS the equilibrium Vlasov opera- evaluated for perturbation withA(x,t=0)=0.

tor, i.e.,

I1l. EQUILIBRIUM
J
d,=v- aj, EYE 2 In generalized coordinateg, i =1,...,3, symmetric con-
figurations are now considered which do not dependjpn
where but only ong; andq,. Examples of these are axisymmetric
equilibria, which do not depend on the toroidal angleand
(0) helically symmetric equilibria, which, in cylindrical coordi-
©_8 [z, VXB
a¥=—" E© 4+ , ®) natesr,¢,z, depend only om andu=me+1z, but not ex-
v ¢ plicitly on z, with m and| arbitrary integer and real num-

bers, respectively. The equilibrium magnetic fi@f)=Vv

with E®=-va® and BO=VxA® the time- . A© can then be expressed in the general form
independent equilibrium electric and magnetic fields, respec-

tively, and BO=Vx(AY(q;,02) V)
(0) (0) (0) (0) (0)
F<VO>:‘9f_V+iB e ) _ 1 [3A3 X A 0x (IR
X  m,C av J(01,92) | 992 dqy  dd1 90\ dd;
The Lagrangiarn, of a particle of species is dAY| ax
(11
90, | 6g3)”
L =QVZ+EA(°)(X)~V—9 dO(x) (5
v 2 c v ' where
from which the momentum canonically conjugatedxtéol- X  Ix  oX
lows: Y conte oG = X X 1)
: dg; ddy ddq; Vd;-VQgpxXVas

Since the equilibrium fieldE@=—-v®© and BO=Vv
x A are time-independent, the particle energy

eV
P,=—=my+ = A0, (6)
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2 G,(X,p)=3¥,(dy,0z,p;){e'lks8s T@1.a2.P0] 4 ¢ ¢},

+ e,,(I)(O) (19)
(13

m, 1
M= v+e, 0=

e
RLAN()
2m [p,, CA

14

i=1,...,3, whereV , andI',, are arbitraryreal functions such
is a constant of the motion, and singg is an ignorable thatG, is a single-valued function ofj;, g, and of the
coordinate, the corresponding canonical momentum p{s. With this ansatz, one obtains

NG
PV3EpV3:mVUS+€A3 (qlqu) (14)

aG, G,
(G, H =75 [V Hu ]+ - [T, H H.1,
is also a constant of the motidpalligraphic letters are used ’ Y (20)
here to denote constants of the particle matidn the five-
dimensionalspace §1,9,,p;i), i=1,...,3, the general equi-

aG,
librium solution of Vlasov's equation [f9.G,]= [f<°) v+ [f((’) r,]
d,£7(a1,02,p) =[ ", H,]=0 (15) G, o
+——1[f,7.azl, (21
is (9(]3
(0) _ £(0)
fV - fv (HV YPV?)’ICV].”CVZ)Y (16) Z$V — %{ei(k3Q3+Fv)+C.C.}>, (22)

14

whereK,,, andC,, are two further constants of the particle
motion which are als@); independentk’,; andC,, are not

explicitly known here, but it is assumed that they appear 9G, i A A 9G G
explicitly in the expression fof(?) in order to be able to =3 W feiksdatly) — g=ilkads Iy o ke g
constructgeneralaxisymmetric or helical equilibria. Exclu- v U3 (53)

sion of eitherC,, or KC,,, or both, from the expression for

f leads tospecial symmetric equilibria. One interesting |nserting Eqs.(20—(23) in Eq. (10), and integrating with
example of these are the,= 1 tokamaks, for which respect taq; betweenqsy andqset+ 27/ks, yields

0= O(H,,P,3). (17)

Introducing alocal Cartesian coordinate system with unit 62H=E f Mz dqldq2d3p{—[\PV,HV]
basis vectors e, e, and e;, such that e v 2m, ks

= (9x/3q3)/|dx/ dqs|, the velocityv at pointx can be de-
composed into three orthogonal componeng§, Ueo, and
ves and, therefore, H,=(m,/2)Zv+e,®©, P, 1 o s
=[myvc3+(ev/c)A(°’-e3][|ax/aq3|] The components - f d>x SE7, (24)
andv, do not contribute to the mean velocify), of spe-

cies v, sincefY(H,,P,3) is an even function ob; and  \here

V. This yields(v),=es(1/n,) [2d% vesf(?, and the cur-

X[, f91-vg, H,Ig,, 0%

rent density is 9,=Kz03+1",(d1,92,pPi), (29
]<o):2 evny<v>y=e32 evf ‘ d3v chin)(Hv,pya)' and the Poisson brackpgg, ,f’ ] is given explicitly by
(18)
ot of® af®
Therefore, for that class of equilibria there is a current only [g,,f{91=[g, V] +k3 C+[9,.K,1] =
in the direction corresponding to the ignorable coordinate IPy3 IK 1
(the toroidal anglep in axissymmetry and the equilibria are &fm)
of the B,=1 type[12]. +[9,.K,5] #. (26)
v2

IV. PERTURBATION ENERGY FOR GENERAL
SYMMETRIC EQUILIBRIA V. EXTREMIZATION OF THE PERTURBATION

. .. s . ENERGY
Here, all physical quantities are periodic in the coordinate

gz with, say, period 2r in axial symmetry or Zr/L, in heli- As pointed out in Sec. II, the equilibrium Vlasov operator
cal symmetry. Since the equilibrium does not depend omd,, given explicitly by Eq.(2), means differentiation with
gz, single modes corresponding to this coordinate can beespect to time along the unperturbed orkitse also Appen-
considered. An appropriate ansatz for the generating functiodix A). Then, for any two function$, Xq;,p;), i=1,...,3,
G, of the perturbations is then the following relations are valid:
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d J(q ,q ) ™
dylf1,fo]= g [f1,F2]=[[F1,F2]74,] rzf 5 —3dq1dq2d3 p| Vi, M.l
dfy dfz x|lg /cl]i(”mﬂg mi(”m}. (29
= H,f flr dt (27) vy &/C,,l vy 8IC,,2

Owing to the lack of knowledge concerning the explicit Accordingly, we minimize the auxiliary functionai®H ,y,
form of the two constants of the motid@,, andk,,, com-  defined by the relation
plete minimalization of5?°H, Eq. (24), with respect td", is
not possible. Partial minimalization, however, can be accom- (6%H) qux= ?H + N (8°H) constrains (29)
plished if one imposes an appropriate constraint. This is done
here by minimizings?H under the subsidiary condition that where \ is a Lagrange multiplier. The variation of
the functionald®H ¢onsraintf@Mmains unchanged, with (6%H) qux With respect tdl", is

O (Hhan (M)l 1 T )= (0T =3 [ 2032 e - «P]([gy, HILoT f0]

f(O) 5f(0
+[5FV7HV][gV’f(O)] )\[gvi V][[grv!lcvl] +[5FV’,CV2] K )
gty ot
_A[érleV][[gvvlcvl] m-i-[gv v’CV2] sz ]’ (30)

which, using the definition of the Poisson brackets, &g.and, in particular, Eq(27), can be transformed to

0 0
ot oK. of'? oK,

J
op 0Ky 0x | 0K, x|

ap

oT' ,¥2(d,g,)

|

(q d)
5F (52H)aux EJ U2 dqlqudsp[

X |p_

0 0 0
af {af;) It'Y oK,
X

J
——.| ', ¥%d,g, -\ +
V( g )|: (9p alcvl (9p |X a,CVZ (9p J:|:|

X

d,|| T, ¥Y[g,,f¥ | K o o
— Yy v v[gv! v ]_)\_[gvv ul] &IC [gvv 1/2] (9,C

|
e i

2 2
+5FV|:dV{\I,V[gV’ ] AW |:[gv! vl] 8/C +[gvl V2] alc

f<°> af
+[Wi(d,g,), F - x{[‘lf (d,9,), K] 5 +[‘I' (d,8,).K02] Z “ (31)

K

Here, o1, is taken to vanish outside the plasma, and on its ¢ (61", W?[g,,f*))=[sI', ¥ g, ,fV1,H,]
boundary(l e., internal perturbations are considereBe-

cause of this, the term which is a divergencexidoes not =(dlox)-[T W7 g,,f D1 (oH/p)]
contribute. The term which is a divergence pnvanishes

upon integration becausé®—0 for p—o. For the same —(alap)-[oT ,Wig,, "]
reasons, the contribution of terdh,(sT',%?[g,,f?]) also (M, 13%)].

vanishes, as can be seen by taking into account the relations
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In a similar way, it can be shown that the term can be shown that the initial current density perturbation
() 40 6jt:t0 can be made at least arbitrarily small
A AT w2 [g, 1] o2 +[g, Kyy] 2 As explained in Appendix BC,, is a completely arbitrary
! R O N et function of the constants of the motidd, , P,3, andf{®) for

particles which do not have periodic orbits. For the excep-
tional case of particles with periodic orbits,, is given by
C,a=(2ml7,)n,q, wherer, is the period of the motion, and
n,o is a completely arbitrary positive or negative integer.
qy.qp) 7 . Thelwave number cqrresponding to the symmet.ry direc-
Sr (8°H) au= E J 1_32 — dg,dg,d3p(sT,) tion k_3 is completely arbitrary, and,, f';deVC are arbitrary

v v 2m; ks functions of the constants of the motiét,, P,3, K£,,, and

does not contributéfor this to be valid, the functiond, g,
=[g,.H,] and[g,,f{¥] must be single valued. This is the
case for the solutions found in Appendix B. Therefore

K,o.

(0) v2

d \Ifz[g f(o)]—)\\lf2 [g,.K ]—afy
v vLYvr !l y v vi/vpl 3’@1

&f(o)
+ [gv 1’Cv2] WZ

X

VI. DISCUSSION

For the general symmetric equilibria considered here,
it is easy to make the expression for the perturbation
energy &°H negative by exploiting the fact that

+[¥2(d,g,),fV]

) oY the functions ¥ ,(H,,P,3,K,1,K,2) and the constants
A [\I,V(dvg])),K:Vl] 3’C,,]_ of the mOtion CV&(HV'PV3’f§/O))’ va(Hv!PVE:IICVl!]CVZ)l
©) Coe(H, P,3.K,1,K,2), and alsoks, can be arbitrarily cho-
2 v sen.
VA, Kol a/c,z”' (32) If 9f97oH,>0 for someH,o, P,z0, Ky10, andK,z0,

5°H can easily be made negative. It suffices to locallzg
Sincedl’, is arbitrary in the internal region, the condition for to the region inH,, P,3, K,; and K,, where &f(VO)/&HV
the vanishing ofy: (6°H)auis >0. Outside this region¥, vanishes. All other¥, are
made equal to zero. One can then, for instance, chkgse
C,, andC,. equal to zero5°H is then negative for al,,
#0. Or, if kg#0 is chosen, an appropriate choice @f,
makess?H negative, and so forth.

ot ot

2 (0)7_ 2 v v
dV \Pv[gvifv ] )\‘Pv[[gv!lcvl] a,CVl—’_[gV!’CVZ] aKVZ

oty If at©/a1,<0 f
2 (0)7_ 2 4 v v or someH o, P30, K,10, andK,z9, as
FIV(dug.). 1 }\[[qf”(d”g”)’lc”l] K 1 is always the case, one localizes around these values in the
240 way just explained. Iks# 0 andaf{?)/sP,;#0, then, choos-
+[v2(d,g,),k, * |=p. 33 ing, for instance, (C,,=C,.=0, and C(C,.(C,,
[¥(d,8,).K.z] K2 33 +ka[ (0F V1P, 3)1(0FD19H,)])<0 yields 8°H<O. If,

. . N _ however, ky=0 or df%/oP,3=0, but 9f9/4K,; and
As pointed out in Appendix B, it is not necessary to find the . (o) . :

) ' . . X af, 19K, arenot both zerpthen, choosing appropriate val-
most general solution of this equation. It suffices to find so-" »

; . > ) forC,, andC,. yields §?H<O.
lutions which are general enough to show that it is posslbléJes vb ©)) S ) _ (0)
to make 5°H negative in all cases of interest. With the ex- If(o) ot 1M, <0 and  9f,71dP,g =01, 70K,
pressions fofg,,,] and[g,,f®] found in Appendix B~ 9f"/9K,2=0 for someH,o, Pyzo, Ky10, aNdK,20, and

the perturbed energy, E@R4) becomes all v, then the distribution function$”) are isotropic and
monotonically decreasing this region of phase space, and
J(Qy,00) ofl® it is not possible to make?H negative by localizing the
SH=-2, f o ke dg,dg,d3p¥? TH W ’s around these values. This is in agreement with previous
Y v 3 v results[7-9,12,13. For the configurations considered here,
Frit; P Pr; however, this can be the case only in some regions of phase
; PV aICV aICV space because nonvanishing gradients with respegt 40 _
XCpa| Coatks (g? +Cyp (;ﬁ +Ce (;? _ K,1, andK,, are necessary in order to produce the electric
at,, af, af,, currents needed for equilibrim in the presence of pressure
oH, oM, oH, gradients.

(34) VIl. SUMMARY

i~ fi 3 2
The electric-field energy term 4gd"x 5E° has been The general expression for the perturbation energy of
dropped for the minimum o§°H, since the perturbed charge \jaxwell-Viasov equilibria was evaluated for symmetric

density can be made zero by an appropriate choice of theynfigurations which have one ignorable variatéeg., the
signsof ¥,,, which do not influence Eq34), and by making  5rgidal anglee in a tokamak ou=me+kz in a helically

use of the freedom to choos®;_. , since this quantity is symmetric configuration Explicit dependence of the equi-
arbitrary. That the initial perturbed charge density can bdibrium distribution functions not only on the conserved par-
made to vanish follows as in Refg.—9] (in a similar way, it  ticle energyH, , but also on the conserved momentdyy
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and on the two further constants of the motith,; and These relations yield

K., is essential for generating the electric currents neces-

sary for equilibrium in the presence of pressure gradients&f(O)‘ G ’ a9 s

Owing to this dependence, the equilibrium distribution func-— | . -

tion of at least one particle species is anisotropi@ space. X ‘v N |x
Perturbations of negative energy’<0) are easily ob-

tained for any local deviation from monotonicity.e., if

ot 19H,>0 for someH,q, P,z0, K,10, and K50 of the =m,

distribution function of any of the particle speciesBut also

if 9f)/9H,<0, itis possible to maké®H negative because

N | x|
X \

ot 4G, _afg’)\ JG,)|
x| apl, |, ax|p

0 (0)
of the necessary anisotropy of the distribution function of at + & . aGV‘ i ) o, ‘
least one particle specie@explicit dependence orP,3, mc " | oV ‘X aq; oV ‘X
K,1, andKC,,). No conditions are imposed on the wave num- 0) ©)
bers. In particular, large spacial gradients of the perturba- _‘9fv ‘ a .3Gv’
tions, and corresponding large perpendicular wave numbers, v |X J9;  ov |X
arenotrequired. This enhances the relevance of these modes,
which could be related to nonlinear instabilities and corre- ot 96, of% 4G,
sponding anomalous transport in tokamks and helically sym- =m, ax | ap ‘ - ap | ox |
metric equilibria. In order to obtain these results, it was suf- P X X P
ficient to consider perturbations which are initially electric e, JAO ﬁGV| ofl®
neutral, and which satisfyB;_ =0. + mc Vaq;- 0 Py |X>< vl (A7)

APPENDIX A: PARTIAL DERIVATIVES . ) ) ) 0
AND POISSON BRACKETS Taking into account the generally valid relatidnx A©

=Vqx(dA®/9q;), and the definition of the Poisson
Let g;(x), i=1,...,3 begeneralized coordinates with co- prackets

variant basisix/dq; and contravariant basigg; /ox=Vq; .
The corresponding covariant and contravariant velocity com- 0)

: of of®
ponents are, respectively, [(f0 g,1=2 W J (ag)
ox | ap| ap | ox|
ax . _ P x x p
vi(x,v)=v~F andv'(x,v)=v-Vqg;=q;, (Al)
Gi one then obtains
and, correspondingly, for the components of the canonical
momentump,=m,v+ (e, /c)A©), ot 66, o] 4G,
o e, o ) ax |, av| ov| ax|,
Pi—p'&—qi—myvﬁg i (X), (A2)
e, ot 9 4G,
. e =m,[f).G,]- — B X (A9)
p'=p-Vai=mp'+ = AY(x). (A3) m,c NIy NI
This yields the relations The unperturbed Hamiltonian for particles of species
ap; aw)| e, dA® ap| ax  ap v m
— =m,— +— Do T oo =V — 2 4o @O
x|, x|, =~ ¢ ox |, 99’ ap| ' H,=7 vi+e,®(x)
(A4)
1 Y A0)(X) ’ (0)
From the expression fop,, the following results are ob- ~om, P FA( +e,27(x), (A10)
tained:
aG, G, and, therefore,
IV _mv$ ) (AS)
X X
dH,| oH,| oD
G, 9G,| dG,| e, [sA9] 4G, v |~V x| T8 Tax (ALD
- qu| = + — . X \
ax |, aq; |, &x\p cl ox | op|,
G e [9AO] sG With Egs.(2), (3), and(Al1l) (with the appropriate substitu-
—— L . (AB) tions madg taken into account, the time derivative &,
IX |, MC[ ox | v, along unperturbed orbitd,G, can be written as

p
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G, e, 9d®  yxBWO© aGV\ which depends explicitly om; is g,=kzqsz+1",, but not
d,G,=v-— +m_y x T |’ | [9,.f97 or [9,.K,], i=1 and 2. Then, for generdis,
v X V¥, and[K,,,K,5], this expression can be a constant of the
B 1 an‘ JH V| JH V| 3Gu\ motion only if
m,| ax|, ov| ox| av| A=1, (B5)
e, aG,| JH,
4+ 5 R, % =[G, H,]. and Eq.(B4) reduces to
m,C EN v
£ af<°>
(Alz) [dVgV' 12 (9H VgV’ V] 0' (BG)
APPENDIX B: SOLUTION OF It is not necessary to find the general solution to this equa-
EULER’S EQUATION tion. It suffices to find solutions which are general enough to

S ) ) show that it is possible to mak##H negative in all cases of
The minimization of the perturbation energffH with interest. With the ansatz

respect td",(d,,d2,pi), i=1,...,3, yields Euler's equation,
(33). In terms of the functiony,=ksqz+1I",(q1,92,p;), this d,9,=[9, H,]1=Cra(H, , Pp3. T O(H, , P35, K11,K02)),

equation can be written as (B7)
Eq. (B6) is satisfied(C,, is a completely arbitrary function of
2 (0) 2 £(0) va
dy[ 2¥ilg,.f,7]1+g,[V. 1] H,, P,s, and fO(H,,P,3,K,1, and K,,) for particles
© . which do not have periodic orbits. Explicitly, EqB7)
of of means
— 2 _r _r
2)\\1,1/[[9111Kvl] 5K:Vl+[gV'ICV2] é,lcvj
fto af(© [ dtV +K303[d1,02,Pi]
_)\gv [\I, Vl] (?K: -I-[\If VZ] m au.o.
0 =Coal M, Poa B (M, Pia K1 Ko2)], (B
_ (0)
(9 dV(q’ ). 5,71+ M (g dV(q, ) K] Zi— K1 an expression which allows, in principle, to determing,

and thusg,,, by integration along the unperturbed orbits un-
der the constraint that the resulting generating function for
the particle position and velocity perturbati@,(x,p) be
single valued. This is similar to the case treated in R&f.
where, again, Appendix D. For the exceptional case of particles with peri-

odic orbits,C,, is obtained by integrating E¢B8) along the
(B2) closed orbit inx-p space, and is then given by

(0)
+ [gvdv(\l,i)!’CVZ] IK

-0, (B1)

dg,
dt } _[gV’HV]'
a.u.o.

Here, the subscript a.u.0. means that the derivatives are taken
along the unperturbed orbits of the particle motionxip
space¥ ,, which is the amplitude of the generating function Where 7, is the period of the motion, the angles are the
G,, is an arbitrary, real, single-valued function. Based oncorresponding mean values along the unperturbed orbits, and
previous experiencf7—9,13, we chooseest functions¥?, M, is a completely arbitrary positive or negative integer.

which depend exclusively on constants of the motion, For these periodic orbitd,qs(to+ 7,) —da(to) ks /(27) is
some integer number, which we cali,,qs. Therefore

d,g,=

2

T, .
— Myt > (ksQ3) | (B9)

va—

\I,V:\I’V(HV'PV3’ICV17’CV2)1 (53)
2
and Eq.(B1) reduces to Cra= ot qus]E - N,o. (B10)
PH() , . . , .
d|2w?g, fO _2)\\1,2[ , v Sincem,; is a com'pletely arbitrary mteger, SOfiSg.
”[ 19,171 o 190K K1 For the evaluation of the perturbation energy, E2y),
240 not onlyd,g,=[g,.H,] is needed, but alspg,,f{?)]. The
+[g,.K,] —— e +9,[1-N[K,1,K,5] fgnct!on g, itself, however, is not ngeded. 'I('gl)ou_gh this func-
tion is not a constant of the motiofig,,f} "] is such a
g2 gfO s 950 } constant since
>< 14 14 _ 14 14 B4
Iy 0K, 9K, I, (9 9,1 H,1=d.,[g,.f}”]1=[d,g,.f;"1=0
(B11

Therefore, the sum of all terms inside the brackets must be a
constant of the motion. In this expression, the only termFurthermore, one has
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of% ofl® o o0
(O) — _ 14 14
[gV7f ] [gV7 V] aH +[gvv V3] arp dv[glulcvl] []CvleCVZ] ﬁf(VO) 07’(:1/2. (814)
fi‘” afi‘” Integration of this equation along unperturbed orbits between
+19,,K.1] m*‘[gvﬁyz] 9K, timest, andt yields
f(o) ﬁf(vo) &f(yo) [gv JCvl]:va(Hv 1Pv31}CV11]C1/2)
Cva aH +k3 (973,,3+[gV,ICV1] m (0)
07f(0) [ICVl ’CVZJ O’UC ( tO) (815)
+[gV'ICV2] W (812) L i
v2 In a similar way, one obtains
The left-hand side and the first two terms of the right-hand [9,.K,2]=Coc(Hy  Puz Co1,KCu2)
side of this equation are constants of the motion. Therefore, e e
the sum of the last two term§g,,K,.]1(af¥/0K,1) ac,, ofl®

+[9,.K,,1(0f 975K, ,) must also be a constant of the mo- K1 K] ot 9K, (t—to) (B16)

tion. Explicitly, one has

o and, therefore,
d,[9,.K,1]1=[d,9,.K,1]=[C,a(H, :Pysaf(y >>,/cyl]

af® af0 af® af®
LK, 4 K, _V:CV —V+C,, .
_[valcvl] +[Pv3 ]Cvl] [g l] a’CVl [g 2] aICVZ b aICVJ- ¢ aICVZ
(B17)
3Cpa Thus, althougtig, ,X,;] and[g,,K,,] are constants of the

motion only if[K,;,K,,]=0, or if f{*) does not depend on
K, or K4, respectively, the combination of these two terms
[H,.K,1] vanishes becaus€,, is a constant of the motion, which appears ins?H is a constant of the motion even if
[P,3./K,1] vanishes sincéC,; does not depend ogs, and  [K,,,K,,]#0. The constants of the motiaf,, andC,. can
[F K0]=—[ K1, K,21(aF 21 0K,5). Therefore be arbritrarily chosen

(0)
+[fv ,]C,,l] ﬁf_(vo) (813)
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